Attention Strategies for Multi-Source Sequence-to-Sequence Learning
نویسندگان
چکیده
Modeling attention in neural multi-source sequence-to-sequence learning remains a relatively unexplored area, despite its usefulness in tasks that incorporate multiple source languages or modalities. We propose two novel approaches to combine the outputs of attention mechanisms over each source sequence, flat and hierarchical. We compare the proposed methods with existing techniques and present results of systematic evaluation of those methods on the WMT16 Multimodal Translation and Automatic Post-editing tasks. We show that the proposed methods achieve competitive results on both tasks.
منابع مشابه
Lot Streaming in No-wait Multi Product Flowshop Considering Sequence Dependent Setup Times and Position Based Learning Factors
This paper considers a no-wait multi product flowshop scheduling problem with sequence dependent setup times. Lot streaming divide the lots of products into portions called sublots in order to reduce the lead times and work-in-process, and increase the machine utilization rates. The objective is to minimize the makespan. To clarify the system, mathematical model of the problem is presented. Sin...
متن کاملA New Method based on Intelligent Water Drops for Multicast Routing in Wireless Mesh Networks
In recent years a new type of wireless networks named wireless mesh networks has drawn the attention of researchers. In order to increase the capacity of mesh network, nodes are equipped with multiple radios tuned on multiple channels emerging multi radio multi channel wireless mesh networks. Therefore, the main challenge of these networks is how to properly assign the channels to the radios. O...
متن کاملSeismic Data Forecasting: A Sequence Prediction or a Sequence Recognition Task
In this paper, we have tried to predict earthquake events in a cluster of seismic data on pacific ring of fire, using multivariate adaptive regression splines (MARS). The model is employed as either a predictor for a sequence prediction task, or a binary classifier for a sequence recognition problem, which could alternatively help to predict an event. Here, we explain that sequence prediction/r...
متن کاملA fuzzy multi-objective linear programming approach for solving a new multi-objective job shop scheduling with sequence-dependent setup times
This paper presents a new mathematical model for a bi-objective job shop scheduling problem with sequence-dependent setup times that minimizes the weighted mean completion time and the weighted mean tardiness time. For solving this multi-objective model, we develop a fuzzy multi-objective linear programming (FMOLP) model. In this problem, a proposed FMOLP method is applied with respect to the o...
متن کاملA heuristic approach for multi-stage sequence-dependent group scheduling problems
We present several heuristic algorithms based on tabu search for solving the multi-stage sequence-dependent group scheduling (SDGS) problem by considering minimization of makespan as the criterion. As the problem is recognized to be strongly NP-hard, several meta (tabu) search-based solution algorithms are developed to efficiently solve industry-size problem instances. Also, two different initi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017